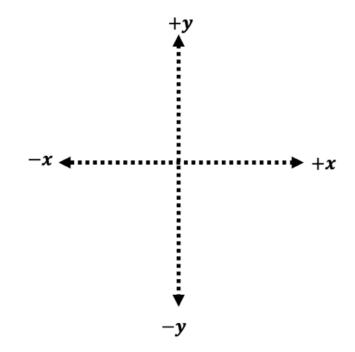
Cycle 4 – Advanced Components

was moving — —

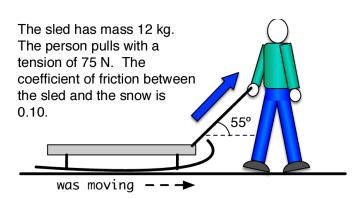
The box weighs 400 N. The person pushes with a force of 300 N. The coefficient of friction between the box and floor is 0.40.

- a.) Draw and label all force on the diagram, including components.
- b.) Find the normal force.
- c.) Find the Force of Friction
- d.) Find the net force in the x-direction.

Forces	х	У
F _{Net}		


Fnet in the x	Fnet in the y
□ gaining speed.	□ acinina one

- □ constant speed.
- □ losing speed.


- $\hfill\Box$ gaining speed.
- □ constant speed.
- □ losing speed.

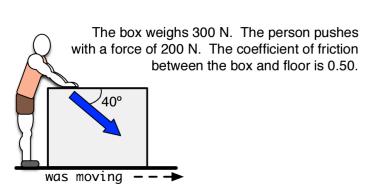
Check-in #3

Name: __

Cycle 4 – Advanced Components

- a.) Draw and label all force on the diagram, including components.
- b.) Find the normal force.
- c.) Find the Force of Friction
- d.) Find the net force in the x-direction.

Forces	х	У
F _{Net}		

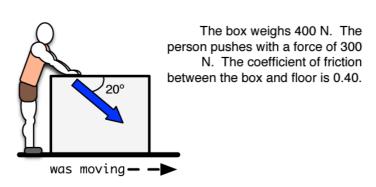

Fnet in the x		

- $\hfill\Box$ gaining speed.
- $\ \square$ constant speed.
- $\hfill\Box$ losing speed.

- □ gaining speed.
- □ constant speed.
- $\hfill\Box$ losing speed.

Check-in #3

	y
-x ←	····· + <i>x</i>
	7
`	7
—1	<i>y</i>

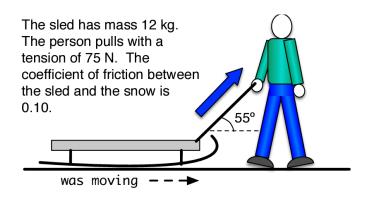


This box will only be moving right or left, NOT up or down!

- a.) Draw and label all force on the diagram, including components.
- b.) Find the normal force.
- c.) Find the Force of Friction
- d.) Find the net force in the x-direction.

Forces	x	У
F _{Net}		

Fnet in the x	Fnet in the y
□ gaining speed. □ constant speed. □ losing speed.	□ gaining speed. □ constant speed. □ losing speed.

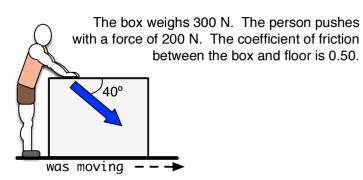


This box will only be moving right or left, NOT up or down!

- a.) Draw and label all force on the diagram, including components.
- b.) Find the normal force.
- c.) Find the Force of Friction
- d.) Find the net force in the x-direction.

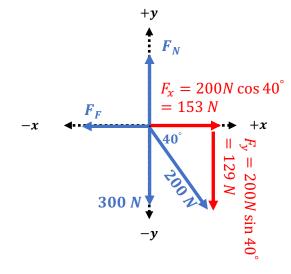
Forces	х	У
F_{Net}		

Fnet in the x	Fnet in the y
gaining speed.	gaining speed.
constant speed.	constant speed.
losing speed.	losing speed.



This sled will only be moving right or left, NOT up or down!

- a.) Draw and label all force on the diagram, including components.
- b.) Find the normal force.
- c.) Find the Force of Friction
- d.) Find the net force in the x-direction.


Forces	х	У
F _{Net}		

Fnet in the x	Fnet in the y
□ gaining speed.□ constant speed.□ losing speed.	□ gaining speed.□ constant speed.□ losing speed.

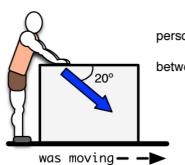
This box will only be moving right or left, NOT up or down!

- a.) Draw and label all force on the diagram, including components.
- b.) Find the normal force.
- c.) Find the Force of Friction
- d.) Find the net force in the x-direction.

b.) Since the normal force must cancel out both the y-component and the weight:

$$F_N = 300 N + 129 N = 429 N$$

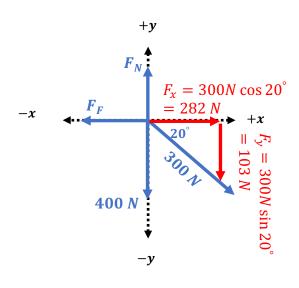
c.)
$$F_f = (0.5) * 429 N = 215 N$$


d.)
$$F_{Net} = F_x - F_f = 153 N - 215 N = -62 N$$

Fnet in the x -62 N

- □ gaining speed. □ constant speed.
- losing speed.
- Fnet in the y

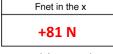
0


- $\ \square$ gaining speed.
- constant speed.
- □ losing speed.

The box weighs 400 N. The person pushes with a force of 300 N. The coefficient of friction between the box and floor is 0.40.

This box will only be moving right or left, NOT up or down!

- a.) Draw and label all force on the diagram, including components.
- b.) Find the normal force.
- c.) Find the Force of Friction
- d.) Find the net force in the x-direction.

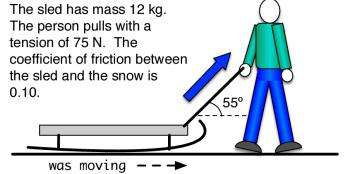


b.) Since the normal force must cancel out both the y-component and the weight:

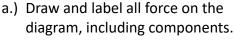
$$F_N = 400 N + 103 N = 503 N$$

c.)
$$F_f = (0.4) * 503 N = 201 N$$

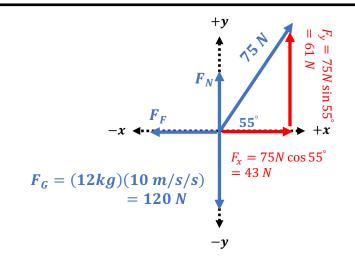
d.)
$$F_{Net} = F_x - F_f = 282 N - 201 N = +81 N$$



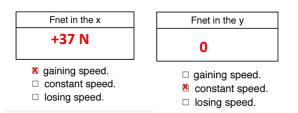
- x gaining speed.
- □ constant speed.
- □ losing speed.



ng speed.


losing speed.

This box will only be moving right or left, NOT up or down!



- b.) Find the normal force.
- c.) Find the Force of Friction
- d.) Find the net force in the x-direction.

b.) Since the normal force and the ycomponent together cancel the weight:

$$F_N + 61N = 120 N$$

 $F_N = 59 N$

c.)
$$F_f = (0.1) * 59 N = 6 N$$

d.)
$$F_{Net} = F_x - F_f = 43 N - 6 N = +37 N$$